CLUSTERING ECG COMPLEXES USING SELF-ORGANIZING CMAC
نویسندگان
چکیده
منابع مشابه
Clustering ECG complexes using Hermite functions and self-organizing maps
An integrated method for clustering of QRS complexes is presented which includes basis function representation and self-organizing neural networks (NN's). Each QRS complex is decomposed into Hermite basis functions and the resulting coefficients and width parameter are used to represent the complex. By means of this representation, unsupervised self-organizing NN's are employed to cluster the d...
متن کاملusing game theory techniques in self-organizing maps training
شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...
Self Organizing Sensor Networks Using Intelligent Clustering
Minimization of the number of cluster heads in a wireless sensor network is a very important problem to reduce channel contention and to improve the efficiency of the algorithm when executed at the level of cluster-heads. This paper proposes a Self Organizing Sensor (SOS) network based on an intelligent clustering algorithm which does not require many user defined parameters and random selectio...
متن کاملSelf- Structured Organizing Single-Input CMAC Control for Robot Manipulator
This paper represents a self‐structured organizing single‐input control system based on differentiable cerebellar model articulation controller (CMAC) for an n‐ link robot manipulator to achieve the high‐precision position tracking. In the proposed scheme, the single‐input CMAC controller is solely used to control the plant, so the input space dimension of CMAC can be simplified a...
متن کاملClustering of Self-Organizing Map
In this paper, we present a new similarity measure for a clustering self-organizing map which will be reached using a new approach of hierarchical clustering. (1) The similarity measure is composed from two terms: weighted Ward distance and Euclidean distance weighted by neighbourhood function. (2) An algorithm inspired from artificial ants named AntTree will be used to cluster a self-organizin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Engineering: Applications, Basis and Communications
سال: 2006
ISSN: 1016-2372,1793-7132
DOI: 10.4015/s1016237206000464